Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner.

نویسندگان

  • Oren Gilad
  • Barzin Y Nabet
  • Ryan L Ragland
  • David W Schoppy
  • Kevin D Smith
  • Amy C Durham
  • Eric J Brown
چکیده

Previous studies indicate that oncogenic stress activates the ATR-Chk1 pathway. Here, we show that ATR-Chk1 pathway engagement is essential for limiting genomic instability following oncogenic Ras transformation. ATR pathway inhibition in combination with oncogenic Ras expression synergistically increased genomic instability, as quantified by chromatid breaks, sister chromatid exchanges, and H2AX phosphorylation. This level of instability was significantly greater than that observed following ATR suppression in untransformed control cells. In addition, consistent with a deficiency in long-term genome maintenance, hypomorphic ATR pathway reduction to 16% of normal levels was synthetic lethal with oncogenic Ras expression in cultured cells. Notably, elevated genomic instability and synthetic lethality following suppression of ATR were not due to accelerated cycling rates in Ras-transformed cells, indicating that these synergistic effects were generated on a per-cell-cycle basis. In contrast to the synthetic lethal effects of hypomorphic ATR suppression, subtle reduction of ATR expression (haploinsufficiency) in combination with endogenous levels of K-ras(G12D) expression elevated the incidence of lung adenocarcinoma, spindle cell sarcoma, and thymic lymphoma in p53 heterozygous mice. K-ras(G12D)-induced tumorigenesis in ATR(+/-)p53(+/-) mice was associated with intrachromosomal deletions and loss of wild-type p53. These findings indicate that synergistic increases in genomic instability following ATR reduction in oncogenic Ras-transformed cells can produce 2 distinct biological outcomes: synthetic lethality upon significant suppression of ATR expression and tumor promotion in the context of ATR haploinsufficiency. These results highlight the importance of the ATR pathway both as a barrier to malignant progression and as a potential target for cancer treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and Cellular Pathobiology Combining ATR Suppression with Oncogenic Ras Synergistically Increases Genomic Instability, Causing Synthetic Lethality or Tumorigenesis in a Dosage-Dependent Manner

Previous studies indicate that oncogenic stress activates the ATR-Chk1 pathway. Here, we show that ATRChk1 pathway engagement is essential for limiting genomic instability following oncogenic Ras transformation. ATR pathway inhibition in combination with oncogenic Ras expression synergistically increased genomic instability, as quantified by chromatid breaks, sister chromatid exchanges, and H2A...

متن کامل

The DNA resection protein CtIP promotes mammary tumorigenesis

Many DNA repair factors act to suppress tumor formation by preserving genomic stability. Similarly, the CtIP protein, which interacts with the BRCA1 tumor suppressor, is also thought to have tumor suppression activity. Through its role in DNA end resection, CtIP facilitates DNA double-strand break (DSB) repair by homologous recombination (DSBR-HR) and microhomology-mediated end joining (MMEJ). ...

متن کامل

Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability.

Checkpoint pathways help cells maintain genomic integrity, delaying cell cycle progression in response to various risks of fidelity, such as genotoxic stresses, compromised DNA replication, and impaired spindle control. Cancer cells frequently exhibit genomic instability, and recent studies showed that checkpoint pathways are likely to serve as a tumor-suppressive barrier in vivo. The cell cycl...

متن کامل

Synthetic Lethal Interaction between Oncogenic KRAS Dependency and STK33 Suppression in Human Cancer Cells

An alternative to therapeutic targeting of oncogenes is to perform "synthetic lethality" screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on m...

متن کامل

Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 70 23  شماره 

صفحات  -

تاریخ انتشار 2010